Neural mechanisms underlying reduced nocifensive sensitivity in autism-associated Shank3 mutant dogs

Abstract

Autistic individuals carrying mutations in SHANK3 (encoding a synaptic scaffolding protein) have been consistently reported to exhibit reduced pain sensitivity. However, the neural mechanisms underlying impaired pain processing remain unclear. To investigate the role of SHANK3 in pain processing, we conducted behavioral, electrophysiological, and pharmacological tests upon nociceptive stimulation in a Shank3 mutant dog model. Behaviorally, Shank3 mutant dogs showed reduced nocifensive sensitivity compared to wild-type (WT) dogs. Electrophysiologically, Shank3 mutant dogs exhibited reduced neural responses elicited by the activations of both Aδ- and C-fiber nociceptors. Additionally, Shank3 mutants showed a lower level of aperiodic exponents, which serve as a marker for the excitatory-inhibitory balance of neural activity. The aperiodic exponents mediated the relationship between genotype and nocifensive sensitivity as well as between genotype and neural responses elicited by nociceptive stimuli. Pharmacologically, the reduced nocifensive sensitivity and atypical excitatory-inhibitory balance were rescued by a GABAAR antagonist pentylenetetrazole. These findings highlight the critical role of Shank3 in pain processing and suggest that an impaired excitatory-inhibitory balance may be responsible for the reduced nocifensive reactivity in autism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental design and behavioral results.
Fig. 2: Reduced cortical responses to nociceptive laser stimuli in Shank3 mutant dogs.
Fig. 3: Reduced oscillatory responses to nociceptive laser stimuli in Shank3 mutant dogs.
Fig. 4: Reduced spectral powers of resting-state brain oscillations in Shank3 mutant dogs.
Fig. 5: The aperiodic exponent mediated the relationship between genotype and nocifensive sensitivity or neural responses evoked by nociceptive stimuli.
Fig. 6: PTZ improved nocifensive sensitivity and aperiodic exponent in Shank3 mutants.

Data availability

The data and analysis code that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Raja SN, Carr DB, Cohen M, Finnerup NB, Flor H, Gibson S, et al. The revised international association for the study of pain definition of pain: concepts, challenges, and compromises. Pain. 2020;161:1976–82.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  2. Guan J, Li G. Injury mortality in individuals with autism. Am J Public Health. 2017;107:791–3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  3. Allely CS. Pain sensitivity and observer perception of pain in individuals with autistic spectrum disorder. ScientificWorldJournal. 2013;2013:e916178.

    Article 

    Google Scholar
     

  4. Moore DJ. Acute pain experience in individuals with autism spectrum disorders: a review. Autism. 2015;19:387–99.

    Article 
    PubMed 

    Google Scholar
     

  5. Furniss F, Biswas AB. Recent research on aetiology, development and phenomenology of self-injurious behaviour in people with intellectual disabilities: a systematic review and implications for treatment. J Intellect Disabil Res. 2012;56:453–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  6. Chien YL, Wu SW, Chu CP, Hsieh ST, Chao CC, Gau SSF. Attenuated contact heat-evoked potentials associated with sensory and social-emotional symptoms in individuals with autism spectrum disorder. Sci Rep. 2017;7:36887.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  7. Failla MD, Moana-Filho EJ, Essick GK, Baranek GT, Rogers BP, Cascio CJ. Initially intact neural responses to pain in autism are diminished during sustained pain. Autism. 2018;22:669–83.

    Article 
    PubMed 

    Google Scholar
     

  8. Rubinstein M, Patowary A, Stanaway IB, McCord E, Nesbitt RR, Archer M, et al. Association of rare missense variants in the second intracellular loop of NaV1.7 sodium channels with familial autism. Mol Psychiatry. 2018;23:231–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  9. Oberman LM, Boccuto L, Cascio L, Sarasua S, Kaufmann WE. Autism spectrum disorder in Phelan-McDermid syndrome: initial characterization and genotype-phenotype correlations. Orphanet J Rare Dis. 2015;10:105.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  10. Yuan B, Wang M, Wu X, Cheng P, Zhang R, Zhang R, et al. Identification of de novo mutations in the chinese autism spectrum disorder cohort via whole-exome sequencing unveils brain regions implicated in autism. Neurosci Bull. 2023;39:1469–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  11. Monteiro P, Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci. 2017;18:147–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  12. Sarasua SM, Boccuto L, Sharp JL, Dwivedi A, Chen C-F, Rollins JD, et al. Clinical and genomic evaluation of 201 patients with Phelan–McDermid syndrome. Hum Genet. 2014;133:847–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  13. Tavassoli T, Layton C, Levy T, Rowe M, George-Jones J, Zweifach J, et al. Sensory reactivity phenotype in Phelan-Mcdermid syndrome is distinct from idiopathic ASD. Genes. 2021;12:977.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  14. Ko HG, Oh SB, Zhuo M, Kaang BK. Reduced acute nociception and chronic pain in Shank2-/- mice. Mol Pain. 2016;12:1744806916647056.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  15. Price TJ, Rashid MH, Millecamps M, Sanoja R, Entrena JM, Cervero F. Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR. J Neurosci. 2007;27:13958–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  16. Wang L, Almeida LEF, Nettleton M, Khaibullina A, Albani S, Kamimura S, et al. Altered nocifensive behavior in animal models of autism spectrum disorder: the role of the nicotinic cholinergic system. Neuropharmacology. 2016;111:323–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  17. Chen Y, Yu J, Niu Y, Qin D, Liu H, Li G, et al. Modeling rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys. Cell. 2017;169:945–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  18. Han Q, Kim YH, Wang X, Liu D, Zhang ZJ, Bey AL, et al. SHANK3 deficiency impairs heat hyperalgesia and TRPV1 signaling in primary sensory neurons. Neuron. 2016;92:1279–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  19. Bunford N, Andics A, Kis A, Miklósi Á, Gácsi M. Canis familiaris as a model for non-invasive comparative neuroscience. Trends Neurosci. 2017;40:438–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  20. Topál J, Román V, Turcsán B. The dog (Canis familiaris) as a translational model of autism: it is high time we move from promise to reality. Wiley Interdiscip Rev Cogn Sci. 2019;10:e1495.

    Article 
    PubMed 

    Google Scholar
     

  21. Czeibert K, Andics A, Petneházy Ö, Kubinyi E. A detailed canine brain label map for neuroimaging analysis. Biol Futur. 2019;70:112–20.

    Article 
    PubMed 

    Google Scholar
     

  22. Hernandez-Avalos I, Mota-Rojas D, Mora-Medina P, Martínez-Burnes J, Casas Alvarado A, Verduzco-Mendoza A, et al. Review of different methods used for clinical recognition and assessment of pain in dogs and cats. Int J Vet Sci Med. 2019;7:43–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  23. van Oostrom H, Stienen PJ, Doornenbal A, Hellebrekers LJ. Nociception-related somatosensory evoked potentials in awake dogs recorded after intra epidermal electrical stimulation. Eur J Pain. 2009;13:154–60.

    Article 
    PubMed 

    Google Scholar
     

  24. Rutherford KMD. Assessing pain in animals. Anim Welf. 2002;11:31–53.

    Article 
    CAS 

    Google Scholar
     

  25. Barry RJ, De Blasio FM. Characterizing pink and white noise in the human electroencephalogram. J Neural Eng. 2021;18:034001.

  26. Donoghue T, Watrous AJ. How can we differentiate narrow-band oscillations from aperiodic activity? Intracranial EEG: A Guide for Cognitive Neuroscientists. Cham: Springer International Publishing; 2023. p. 351–64.

    Chapter 

    Google Scholar
     

  27. Ahmad J, Ellis C, Leech R, Voytek B, Garces P, Jones E, et al. From mechanisms to markers: novel noninvasive EEG proxy markers of the neural excitation and inhibition system in humans. Transl Psychiatry. 2022;12:467.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  28. Peirs C, Seal RP. Neural circuits for pain: recent advances and current views. Science. 2016;354:578–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  29. Torsney C, MacDermott AB. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci. 2006;26:1833–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  30. Xiong W, Ping X, Ripsch MS, Chavez GSC, Hannon HE, Jiang K, et al. Enhancing excitatory activity of somatosensory cortex alleviates neuropathic pain through regulating homeostatic plasticity. Sci Rep. 2017;7:12743.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  31. Han Q, Wang H, Lu X, Li Y, Guo Y, Zhao X, et al. Preoperative resting-state electrophysiological signals predict acute but not chronic postoperative pain. Eur J Pain. 2025;29:e4757.

    Article 
    PubMed 

    Google Scholar
     

  32. Chini M, Pfeffer T, Hanganu-Opatz I. An increase of inhibition drives the developmental decorrelation of neural activity. eLife. 2022;11:e78811.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  33. Gao R, Peterson EJ, Voytek B. Inferring synaptic excitation/inhibition balance from field potentials. Neuroimage. 2017;158:70–78.

    Article 
    PubMed 

    Google Scholar
     

  34. Lombardi F, Herrmann HJ, de Arcangelis L. Balance of excitation and inhibition determines 1/f power spectrum in neuronal networks. Chaos. 2017;27:047402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  35. Lendner JD, Helfrich RF, Mander BA, Romundstad L, Lin JJ, Walker MP, et al. An electrophysiological marker of arousal level in humans. eLife. 2020;9:e55092.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  36. Gonzalez-Burgos I, Bainier M, Gross S, Schoenenberger P, Ochoa JA, Valencia M, et al. Glutamatergic and GABAergic receptor modulation present unique electrophysiological fingerprints in a concentration-dependent and region-specific manner. eNeuro. 2023;10:ENEURO.0406-22.2023.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  37. Potter LE, Paylor JW, Suh JS, Tenorio G, Caliaperumal J, Colbourne F, et al. Altered excitatory-inhibitory balance within somatosensory cortex is associated with enhanced plasticity and pain sensitivity in a mouse model of multiple sclerosis. J Neuroinflammation. 2016;13:142.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  38. Tian R, Li Y, Zhao H, Lyu W, Zhao J, Wang X, et al. Modeling Shank3-associated autism spectrum disorder in beagle dogs via CRISPR/Cas9 gene editing. Mol Psychiatry. 2023;28:3739–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  39. Ren W, Yu S, Guo K, Lu C, Zhang YQ. Disrupted human-dog interbrain neural coupling in autism-associated Shank3 mutant dogs. Adv Sci. 2024;11:e2402493.

    Article 

    Google Scholar
     

  40. Shi Q, Wu L, Ren B, Guo K, Jiang Y-H, Zhang YQ, et al. Impaired tactile processing in autism-associated Shank3 mutant dogs: neural mechanism and intervention. Sci Bull. 2025;70:483–7.

    Article 

    Google Scholar
     

  41. Bromm B, Treede RD. Laser-evoked cerebral potentials in the assessment of cutaneous pain sensitivity in normal subjects and patients. Rev Neurol. 1991;147:625–43.

    CAS 
    PubMed 

    Google Scholar
     

  42. Carmon A, Mor J, Goldberg J. Evoked cerebral responses to noxious thermal stimuli in humans. Exp Brain Res. 1976;25:103–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  43. Leandri M, Saturno M, Spadavecchia L, Iannetti GD, Cruccu G, Truini A. Measurement of skin temperature after infrared laser stimulation. Neurophysiol Clin. 2006;36:207–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  44. Wu L, Mei S, Yu S, Han S, Zhang YQ. Shank3 mutations enhance early neural responses to deviant tones in dogs. Cereb Cortex. 2023;33:10546–57.

    Article 
    PubMed 

    Google Scholar
     

  45. Hu L, Cai MM, Xiao P, Luo F, Iannetti GD. Human brain responses to concomitant stimulation of Aδ and C nociceptors. J Neurosci. 2014;34:11439–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  46. Hu L, Zhang Z. EEG signal processing and feature extraction. Singapore: Springer Singapore; 2019.

    Book 

    Google Scholar
     

  47. Hu L, Iannetti GD. Neural indicators of perceptual variability of pain across species. Proc Natl Acad Sci USA. 2019;116:1782–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  48. Mitsis GD, Iannetti GD, Smart TS, Tracey I, Wise RG. Regions of interest analysis in pharmacological fMRI: How do the definition criteria influence the inferred result? Neuroimage. 2008;40:121–32.

    Article 
    PubMed 

    Google Scholar
     

  49. Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat Neurosci. 2020;23:1655–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  50. Huang RQ, Bell-Horner CL, Dibas MI, Covey DF, Drewe JA, Dillon GH. Pentylenetetrazole-Induced inhibition of recombinant γ-Aminobutyric acid Type A (GABAA) receptors: mechanism and site of action. J Pharmacol Exp Ther. 2001;298:986–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  51. Wu X, Lu X, Zhang H, Bi Y, Gu R, Kong Y, et al. Sex difference in trait empathy is encoded in the human anterior insula. Cereb Cortex. 2023;33:5055–65.

    Article 
    PubMed 

    Google Scholar
     

  52. Zhang H, Bi Y, Hou X, Lu X, Tu Y, Hu L. The role of negative emotions in sex differences in pain sensitivity. Neuroimage. 2021;245:118685.

    Article 
    PubMed 

    Google Scholar
     

  53. Tu Y, Zhang Z, Tan A, Peng W, Hung YS, Moayedi M, et al. Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli. Hum Brain Mapp. 2016;37:501–14.

    Article 
    PubMed 

    Google Scholar
     

  54. Yamazaki M, Honda S, Tamaki K, Irie M, Mihara T. Effects of (+)-bicuculline, a GABAa receptor antagonist, on auditory steady state response in free-moving rats. PLoS ONE. 2020;15:e0236363.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  55. Song TJ, Lan XY, Wei MP, Zhai FJ, Boeckers TM, Wang JN, et al. Altered behaviors and impaired synaptic function in a novel rat model with a complete Shank3 deletion. Front Cell Neurosci. 2019;13:111.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  56. Jin QQ, Wu GQ, Peng WW, Xia XL, Hu L, Iannetti GD. Somatotopic representation of second pain in the primary somatosensory cortex of humans and rodents. J Neurosci. 2018;38:5538–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  57. Hu L, Xia XL, Peng WW, Su WX, Luo F, Yuan H, et al. Was it a pain or a sound? across-species variability in sensory sensitivity. Pain. 2015;156:2449.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  58. Xia XL, Peng WW, Iannetti GD, Hu L. Laser-evoked cortical responses in freely-moving rats reflect the activation of C-fibre afferent pathways. Neuroimage. 2016;128:209–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  59. Lee MC, Mouraux A, Iannetti GD. Characterizing the cortical activity through which pain emerges from nociception. J Neurosci. 2009;29:7909–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  60. Valentini E, Hu L, Chakrabarti B, Hu Y, Aglioti SM, Iannetti GD. The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. Neuroimage. 2012;59:1571–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  61. Ren W, Huang K, Li Y, Yang Q, Wang L, Guo K, et al. Altered pupil responses to social and non-social stimuli in Shank3 mutant dogs. Mol Psychiatry. 2023;28:3751–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  62. Gross J, Schnitzler A, Timmermann L, Ploner M. Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol. 2007;5:e133.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  63. Peng W, Xia X, Yi M, Huang G, Zhang Z, Iannetti G, et al. Brain oscillations reflecting pain-related behavior in freely moving rats. Pain. 2018;159:106–18.

    Article 
    PubMed 

    Google Scholar
     

  64. Zhang LB, Chen YX, Li ZJ, Geng XY, Zhao XY, Zhang FR, et al. Advances and challenges in neuroimaging-based pain biomarkers. Cell Rep Med. 2024;5:101784.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  65. Schulz E, Tiemann L, Witkovsky V, Schmidt P, Ploner M. Gamma oscillations are involved in the sensorimotor transformation of pain. J Neurophysiol. 2012;108:1025–31.

    Article 
    PubMed 

    Google Scholar
     

  66. Li Z, Zhang L, Zeng Y, Zhao Q, Hu L. Gamma-band oscillations of pain and nociception: a systematic review and meta-analysis of human and rodent studies. Neurosci Biobehav Rev. 2023;146:105062.

    Article 
    PubMed 

    Google Scholar
     

  67. May ES, Nickel MM, Ta Dinh S, Tiemann L, Heitmann H, Voth I, et al. Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients. Hum Brain Mapp. 2019;40:293–305.

    Article 
    PubMed 

    Google Scholar
     

  68. Rojas DC, Wilson LB. γ-band abnormalities as markers of autism spectrum disorders. Biomark Med. 2014;8:353–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  69. Simon DM, Wallace MT. Dysfunction of sensory oscillations in autism spectrum disorder. Neurosci Biobehav Rev. 2016;68:848–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  70. Tierney AL, Gabard-Durnam L, Vogel-Farley V, Tager-Flusberg H, Nelson CA. Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder. PLoS ONE. 2012;7:e39127–e39127.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  71. Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron. 2013;80:751–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  72. Roche KJ, LeBlanc JJ, Levin AR, O’Leary HM, Baczewski LM, Nelson CA. Electroencephalographic spectral power as a marker of cortical function and disease severity in girls with Rett syndrome. J Neurodev Disord. 2019;11:15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  73. Wilkinson CL, Nelson CA. Increased aperiodic gamma power in young boys with fragile X syndrome is associated with better language ability. Mol Autism. 2021;12:17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  74. Molina JL, Voytek B, Thomas ML, Joshi YB, Bhakta SG, Talledo JA, et al. Memantine effects on electroencephalographic measures of putative excitatory/inhibitory balance in schizophrenia. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5:562–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  75. Foss-Feig JH, Adkinson BD, Ji JL, Yang G, Srihari VH, McPartland JC, et al. Searching for cross-diagnostic convergence: neural mechanisms governing excitation and inhibition balance in schizophrenia and autism spectrum disorders. Biol Psychiatry. 2017;81:848–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  76. Jiang YH, Ehlers MD. Modeling autism by SHANK gene mutations in mice. Neuron. 2013;78:8–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  77. Zhu F, Shi Q, Jiang Y, Zhang YQ, Zhao H. Impaired synaptic function and hyperexcitability of the pyramidal neurons in the prefrontal cortex of autism-associated Shank3 mutant dogs. Mol Autism. 2024;15:9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  78. Jun HW. Pharmacokinetic studies of pentylenetetrazol in dogs. J Pharm Sci. 1976;65:1038–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  79. Kirkpatrick DR, McEntire DM, Hambsch ZJ, Kerfeld MJ, Smith TA, Reisbig MD, et al. Therapeutic basis of clinical pain modulation. Clin Transl Sci. 2015;8:848–56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  80. Cetin FH, Tunca H, Güney E, Iseri E. Neurotransmitter systems in autism spectrum disorder. In: Fitzgerald M (ed). Autism Spectrum Disorder-Recent Advances. InTech: London. 2015, pp 15–30.

Download references

Acknowledgements

We thank Professor K. Guo and members of the Zhang laboratory for discussion. This work was supported in part by grants from the National Key Research and Development Program (2021ZD0203901 to Y.Z.), the National Science Foundation of China (32394030 to Y.Z., 32071061 to L.H.), the Beijing Natural Science Foundation (JQ22018 to L.H.), Wuhan Municipal S&T Project (Grant No. 2024020702030125 to Y.Z.), and sample storage by the Canine Biobank, Chinese Academy of Sciences (KFJ-BRP-004 to Y.Z.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: QS, LH, YZ; Methodology: QS, LH; Software: QS, LH; Validation: QS; Formal analysis: QS; Investigation: QS, BR, LW; Resources: LH, YZ; Data curation: QS; Writing – original draft preparation: QS, LH, YZ; Writing – review & editing: XL, LZ, YZ, LH; Visualisation: QS; Supervision: LH, YZ; Project administration: LH, YZ; Funding acquisition: LH, YZ.

Corresponding authors

Correspondence to
Li Hu or Yong Q. Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Ren, B., Lu, X. et al. Neural mechanisms underlying reduced nocifensive sensitivity in autism-associated Shank3 mutant dogs.
Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-02952-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-025-02952-y

The Favicon for the website, dogsandpurses(dot)com, features an all-black background with a minimalist line drawing of a puppy's head poking out of a stylish purse. The puppy's head is drawn with a cute and friendly expression, making it the focal point of the design. The purse, which the puppy is emerging from, is depicted with clean, elegant lines. The contrast between the black background and the white line drawing creates a striking and modern look for the Favicon.
Dogs and Purses Favicon

WANT MORE?

SIGN UP TO RECEIVE THE LATEST on PAWS and PURSES in PERFECT PROPORTION.

We don’t spam! Read our privacy policy for more info.

This post was originally published on this site be sure to check out more of their content.